

Fachtag ökologischer Gemüsebau 2. Dezember 2021

TEAM MADEBYMADE

Kai Hempel

Geschäftsführer

- Betriebswirt
- Praktische Erfahrung in Marketing und Handel
- Verantwortlichkeiten: Finanzen & Controlling, Marketing & Verkauf, Personalwesen

Dr. Jonas Finck

Geschäftsführer

- Promovierter Biologe
- Zahlreiche Erfahrungen in der Insektenzucht
- Experte auf dem Gebiet der Verhaltensforschung von Insekten
- Verantwortlichkeiten: R&D, Aufzucht, technische Umsetzung, Qualitätsmanagement

Mathias Arndt

Controlling

Yannik Weinreis

Business Development

Charlott Ochsenfahrt

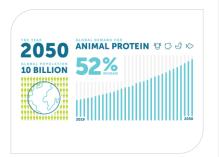
Assistenz der Geschäftsführung

Dennis Höfling

Produktionsleitung

Dr. Justus von Sonntag

Automatisierung



DAS PROBLEM

Globale Herausforderungen

0.9 Mrd Tonnen organische Reststoffe¹

Steigende Nachfrage an tierischem Eiweiß²

Landnutzungsänderungen

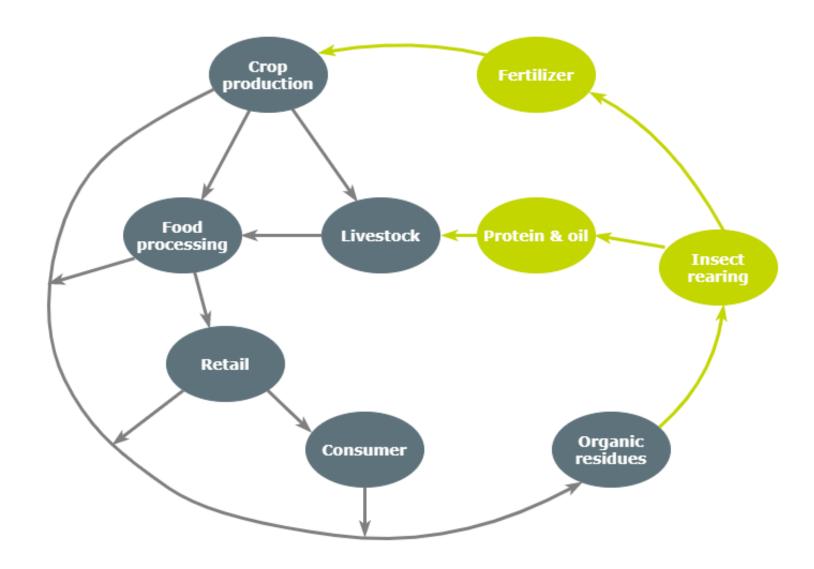
Unser Beitrag

Aufwertung von
organischen
Reststoffen in
hochwertige Tier- und
Pflanzennahrung

von natürlichen
Ressourcen

Source: ¹2.0bn tonnes of waste globally multiplied by 44% food and green as per What a Waste: An Updated Look into the Future of Solid Waste Management, World Bank, 20 September 2018; ²BAP Aquaculture. (2019);

WARUM INSEKTEN


Quelle: madebymade

Insekten

- ✓ Aufwertung von organischen Reststoffen
- √ Hohe Widerstandfähigkeit
- √ Nachhaltige Produktion
- Förderung der Kreislaufwirtschaft
- ✓ Gute Futterverwertung

REGIONALE KREISLAUFWIRTSCHAFT

UNSERE NACHHALTIGEN PRODUKTE MADE IN GERMANY

Hinweis: Alle Fotos wurden durch madebymade aufgenommen.

PRODUKTDATENBLATT

Analytischer Befund:	in OS	in TS
Trockensubstanz	> 65 %	100 %
Organische Substanz	> 55 %	> 85 %
Stickstoff ges. Ammonium-Stickstoff (NH4-N)	20 kg / t 5 kg / t	30.8 kg / t 7.7 kg / t
pH-Wert Kohlenstoff-Stickstoff-Verhältnis	6.9	13:1 (C:N)
Phosphor Phosphoroxid (P ₂ O ₅) Kalium Kaliumoxid (K ₂ O) Magnesium Magnesiumoxid (MgO)	8 kg / t 15 kg / t 25 kg / t 30 kg / t 2.5 kg / t 4 kg / t	12.3 kg / t 23.1 kg / t 38.5 kg / t 46.2 kg / t 3.8 kg / t 6.2 kg / t
Schwefel Schwefelsulfat (SO ₄)	3 kg / t 10 kg / t	4.6 kg / t 15.4 kg / t

Anwendungsmöglichkeiten

UNSER INSEKTENDÜNGER

Quelle: Eigene Aufnahme

Eigenschaften:

- √ Quelle für organischen N, P, und K
- √ Hoher Organikgehalt
- √ Enthält von Natur aus Chitin
- √ Umweltfreundliche Produktionsweise.

Effekte:

- ✓ Ausgeglichene NPK Düngung mit konstanter Nährstofffreigabe
- √ Verbesserte Bodenstruktur- und Fruchtbarkeit durch Humusaufbau
- ✓ Stimulation von gutartigem Bodenleben und Stärkung der Widerstandsfähigkeit von Pflanzen und Böden

Quelle: Eigene Aufnahme

Wissenschaftliche Studien:

- √ Höherer Ertrag von Frühlingszwiebeln und verbesserte Anbaubedingungen im Vergleich zu handelsüblichem NPK-Dünger¹
- ✓ Induziert Krankheitsresistenz bei Nutzpflanzen²
- ✓ Signifikant erhöhtes Wachstum von Salat und reduziertes Überleben von menschlichen Krankheitserregern ³

Quellen:

- ¹ Devic, E. 2016. Assessing insect-based products as feed ingredients for aquaculture
- ² Quilliam et al. 2020. Integrating insect frass biofertilisers into sustainable periurban agro-food systems
- ³ Debode et al. 2016. Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves

WEITERE EINDRÜCKE

Brokkoli, Kohlrabi, Steckzwiebeln

Quelle: Eigene Aufnahme

Himbeeren

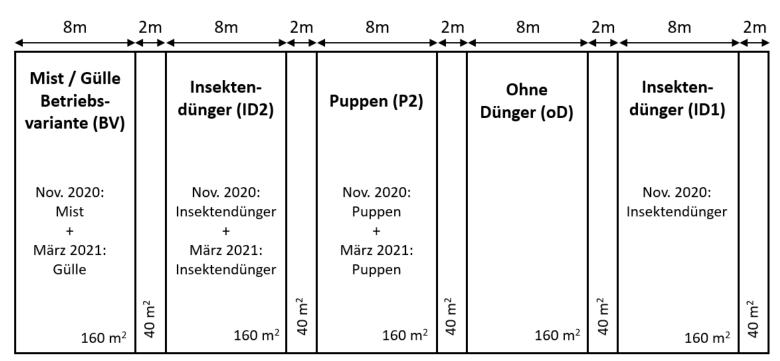
Quelle: Eigene Aufnahme

WEITERE EINDRÜCKE

Kohlrabi

Quelle: Eigene Aufnahme

Kartoffeln



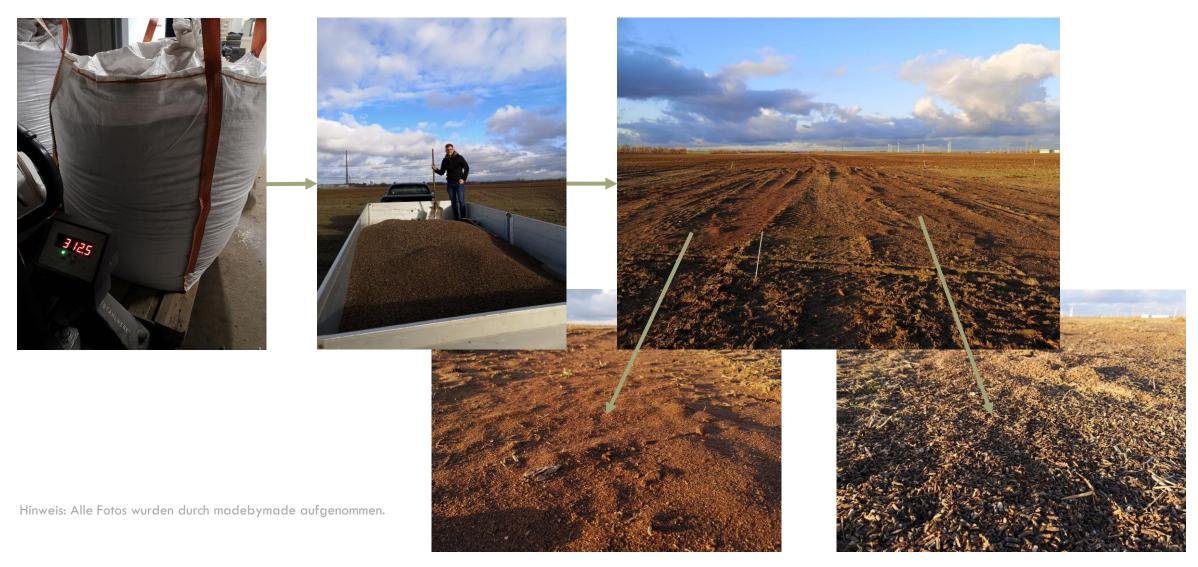
Quelle: Eigene Aufnahme

VERSUCHSAUFBAU

Feldaufteilung

Auf jeder Parzelle wurden 10,8 kg anrechenbarer Stickstoff ausgebracht, bei 2 Gaben entsprechend der Betriebsvariante 2,8 kg im November 2020 und 8 kg im März 2021.

Annahmen über anrechenbare N-Anteile:

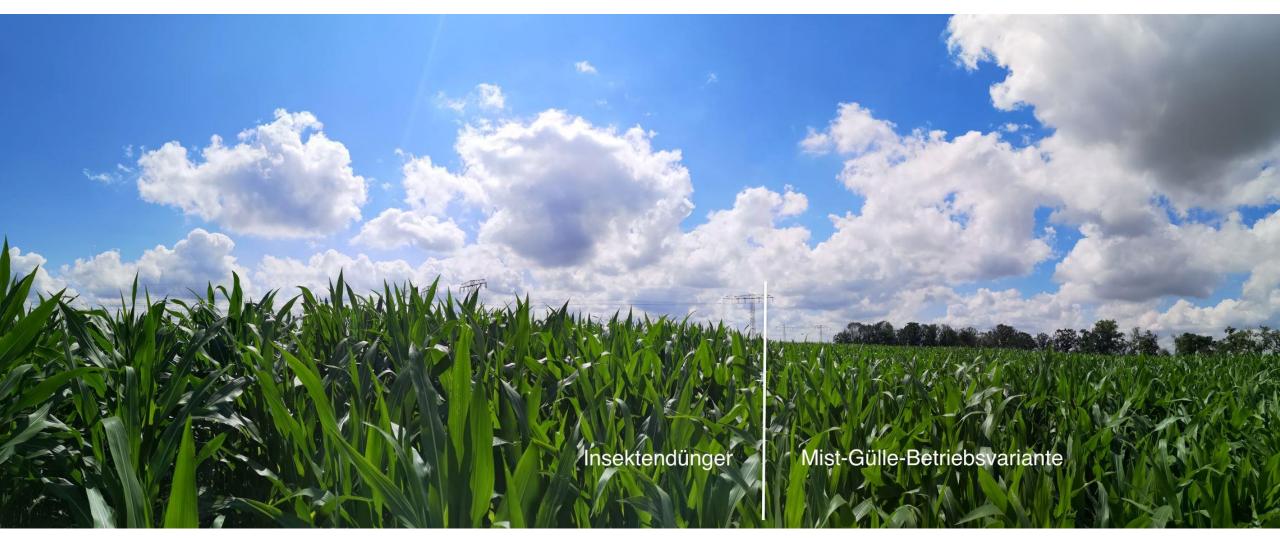

Mist, Insektendünger, Puppen: 25%; Gülle: 50%

Zeitplan

Zeit	Aktion
Nov. 2020	Ausbringung Mist, Insektendünger, Puppenschalen
Ende Nov. 2020	Versuchsfläche flach und tief bearbeiten
März 2021	Ausbringung Gülle
Mitte April 2021	Aussaat Mais + Diamantphosphat (=DAP) – Unterfußdüngung
September 2021	Auswertung (Auswiegen von Pflanzen und Kolben, jeweils 15 Pflanzen der mittleren Versuchsreihe)

VERSUCHSDURCHFÜHRUNG (NOV. 2020)

VERSUCHSDURCHFÜHRUNG (MRZ. 2021)


Quelle: Eigene Aufnahme

Quelle: Eigene Aufnahme

FELDBESICHTIGUNG (JUL. 2021)

Quelle: Eigene Aufnahme

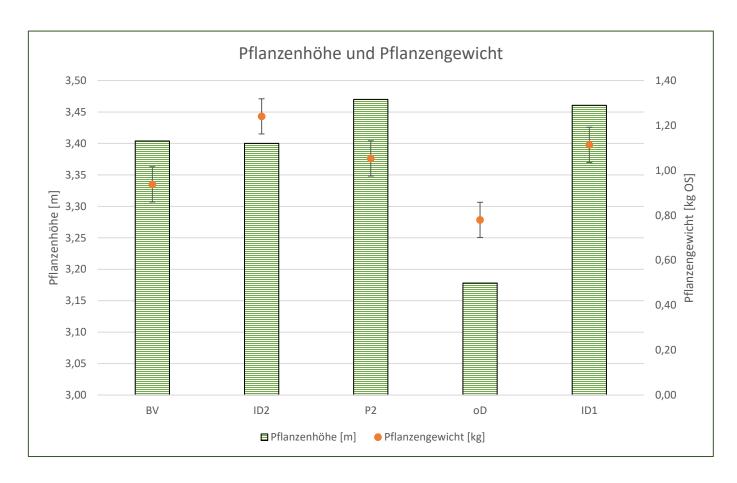
FELDBESICHTIGUNG (JUL. 2021)

Quelle: Eigene Aufnahme

Quelle: Eigene Aufnahme

VERSUCHSAUSWERTUNG (SEP. 2021)

Quelle: Eigene Aufnahme

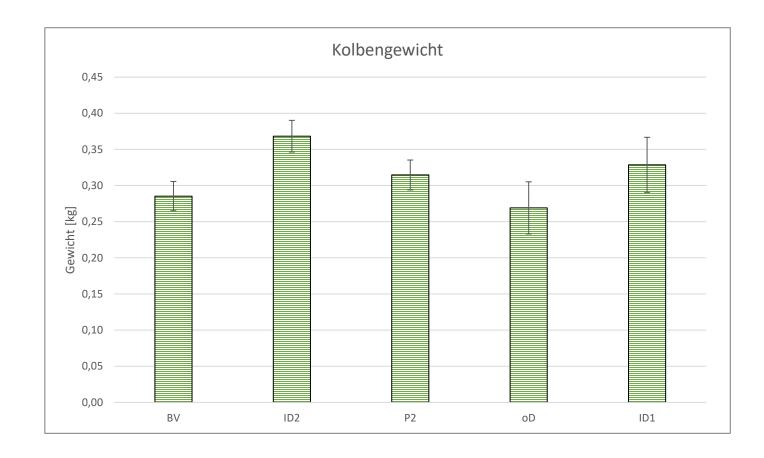


Quelle: Eigene Aufnahme

Quelle: Eigene Aufnahme

VERSUCHSAUSWERTUNG (SEP. 2021) PFLANZENANALYSE

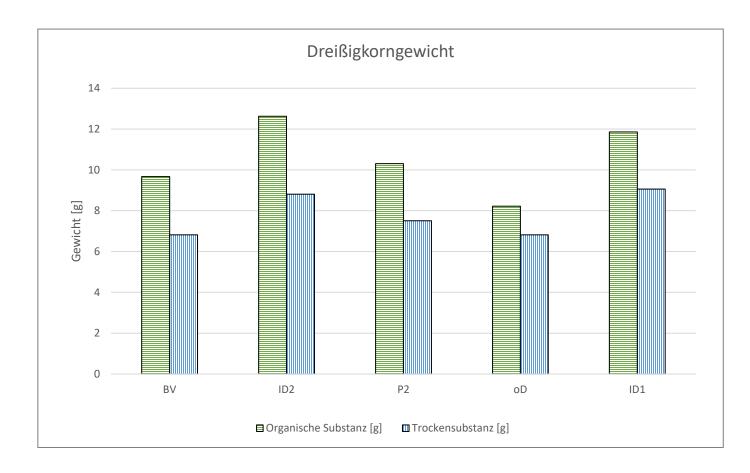
Beobachtungen:


- Insektendünger führt im Vergleich zur Betriebsvariante zu 18 bis 32 % schwereren Pflanzen und im Vergleich zur Parzelle ohne Dünger zu bis zu 59 % schwereren Pflanzen.
- Puppen führen im Vergleich zur Betriebsvariante zu 12 % schwereren Pflanzen.
- Zweifache Insektendüngung sorgt im Vergleich zur einfachen Insektendüngung für eine Zunahme des Pflanzengewichtes, aber eine niedrigere Wuchshöhe (= Investition in die nächste Generation).

Legende: BV = Betriebsvariante; ID2 = Insektendünger Herbst und Frühjahr; P2 = Puppen Herbst und Frühjahr; oD = Ohne Dünger; ID1 = Insektendünger Herbst

VERSUCHSAUSWERTUNG (SEP. 2021) KOLBENANALYSE

Beobachtungen:


- Insektendünger führt im Vergleich zur Betriebsvariante zu 14 bis 28 % schwereren Kolben und im Vergleich zur Parzelle ohne Dünger zu bis zu 37% schwereren Kolben.
- Puppen führen im Vergleich zur Betriebsvariante zu 7 % schwereren Kolben und im Vergleich zur Parzelle ohne Dünger zu 15 % schwereren Kolben.
- Zweifache Insektendüngung führt im Vergleich zur einfachen Insektendüngung zu einem 12 % höheren Kolbengewicht.

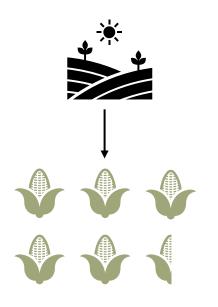
Legende: BV = Betriebsvariante; ID2 = Insektendünger Herbst und Frühjahr; P2 = Puppen Herbst und Frühjahr; oD = Ohne Dünger; ID1 = Insektendünger Herbst

VERSUCHSAUSWERTUNG (SEP. 2021) KORNANALYSE

Beobachtungen:

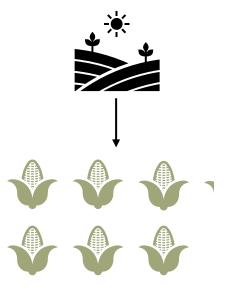
- Parzelle mit Insektendünger hat im Vergleich zur Betriebsvariante 23 % (ID1) bzw. 31 % (ID2) schwerere Körner [OS] und im Vergleich zur Parzelle ohne Dünger bis zu 54 % schwerere Körner [OS].
- Puppen haben gegenüber der Betriebsvariante 7 % schwerere Körner [OS] und im Vergleich zur Parzelle ohne Dünger 25 % schwerere Körner [OS].
- Trockensubstanz mit ähnlichen Werten.
 Korngewicht bei Insektendünger ca. 30 %
 höher als bei Betriebsvariante, Puppen gegenüber Betriebsvariante +10 %.

Legende: BV = Betriebsvariante; ID2 = Insektendünger Herbst und Frühjahr; P2 = Puppen Herbst und Frühjahr; oD = Ohne Dünger; ID1 = Insektendünger Herbst



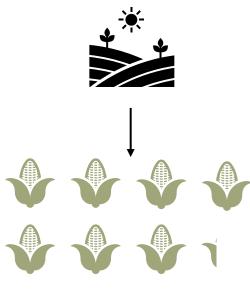
HOCHRECHNUNG

Betriebsvariante


1 ha

= 550 dt Biomasse

Puppen


1 ha

= 605 dt Biomasse

Insektendünger

1 ha

= 715 dt Biomasse

ZUSAMMENFASSUNG

- Insektenfraß und Puppen sind sehr hochwertige organische Dünger
- Ertragszuwächse sind auf größere Körner zurückzuführen
- Breites Einsatzspektrum
- Ausbringungstechnik muss eventuell angepasst werden, ist aber machbar und den Aufwand wert
- Schließung von Nährstoffkreisläufen
- Eintrag von Mikro- und Makronährstoffen
- Weitere Forschung eröffnet neue Anwendungsmöglichkeiten

