

Landesforschungsanstalt für Landwirtschaft und Fischerei

Stickstoffversorgung durch Leguminosenanbau in gemüsebaulichen Fruchtfolgen

Felix Besand, Kai-Uwe Katroschan Online, 02. Dezember 2021

Nutri@Ökogemüse (Laufzeit: 03/2019 - 02/2022)

Projektstruktur und Vorgehensweise

Kooperation mit dem Praxis-Forschungs-Netzwerk "NutriNet"

Weiterentwicklung, Prüfung und Validierung EDV-gestützter Düngemanagementsysteme (NDICEA, N-Expert) für den ökologischen Anbau durch Nutzung der im Gesamtprojekt erhobenen Daten

AP 4 Erhöhung der biologischen N-**Fixierung**

AP 5

Koordination

 $\overline{}$ AP

AP 3

EDV-gestützte

Systeme

Erhöhung des betriebseigenen N-Inputs durch Maximierung legumer N2-Fixierung und N-Nutzungseffizienz in Kombination mit Anbauverfahren (Grünschnitttransfer, Untersaaten, Winterzwischenfrüchte)

Alternative N-Düngemittel Verbesserung der N-Effizienz, Stoffströme und -bilanzen durch kleegrasbasierte Düngemittel (z.B. Silage, Pellets, Gärreste), Reststoffe der Lebensmittelverarbeitung (z.B. Tofumolke), Komposte, etc. und deren Ausbringungsverfahren (u.a. Unterfuß-, Reihendüngung, breitflächig mit/ohne Einarbeitung)

AP 6 Interaktion Dünger x Boden

AP=Arbeitspaket

Identifizierung von Ursachen für unterschiedliche N-Freisetzung verschiedener Böden und Düngemittel, sowie einer Untersuchungsmethode zur verlässlicheren Prognostizierung der N-Mineralisierung (Bodenuntersuchungen, Inkubations- und Neubauer-Versuche)

Dissemination: Projektberichte, Broschüren, Feldtage, wissenschaftliche Publikationen

Alternative N-Quellen für den ökologischen Gemüsebau

- Hoher N-Input aus betriebsfremden Quellen: v.A. Handelsdünger
 - zunehmende Limitierung durch die Anbauverbände
- Verfügbare N-Zukaufsdüngemittel sind Mehrnährstoffdünger mit mehr oder weniger unausgewogener Nährstoffzusammensetzung
 - Insbesondere Wirtschaftsdünger wie z.B. Hühnertrockenkot sind für die N-Versorgung von Gemüsekulturen ungeeignet

₹ N₂-Fixierung ist die einzige N-Quelle im ÖL ohne andere Begleitnährstoffe

• Integration abhängig vom Betriebstyp: Feldgemüsebau im Gemischtbetrieb, Gärtnerischer Freilandgemüsebau, Unterglasanbau

Potenziale & Stellschrauben

Wahl des Anbauverfahrens

- 7wischenfruchtanbau
 - Gemenge oder Reinsaat?
- Lebendmulch "living mulch"
- Feldfutterbau: ein- oder mehrjährig
 - Verwertung des Schnittguts?
- > Auswahl geeigneter Leguminosen bzw. Gemenge

Etablierung und Pflege

- Vorkultur, Bodenbearbeitung, Aussaattechnik, Düngung
- Aussaatverfahren: Blanksaat Untersaat?
- Beikrautregulierung, Bewässerung?

- Mulchverbleib
- Wann räumt die
- Primäres Ziel?
- · Wie umbrechen?

Potenzielle Leistungen und Ziele des Zwischenfruchtanbaus

- Catch-crop-Effekte (Reduzierung NO3-Verluste, N-Transfer in Folgefrüchte)
- N-Input durch N₂-Fixierung
- Humusversorgung
- Erosionsschutz
- Verbesserung bodenphysikalischer Eigenschaften
- Break-crop-Effekte (Unkrautunterdrückung, Phytopathologische Aspekte, Biodiversitätsförderung)

Versuche im Verbundprojekt Nutri@Ökogemüse

	Winter-		Standort / Einrichtung				
		zwischenfrucht		UHOH Hohenheim	LFA MV Gülzow	LWG Bamberg	LWK NRW Köln-Auweiler
1	Kontrolle und nicht-legume	ohne (Winterbrache)	X	X	х	X	x
2	Referenz	Grünroggen	X	X	Х	X	х
3	Värnor	Wintererbse	Х	Х	Х	Х	Х
4	Körner- leguminosen	Winterackerbohne		X			x
5		Winterwicke	X		X	X	X
6	Gemenge mit Nicht-Leguminosen	Landsberger Gemenge (Inkarnatklee, Winterwicke, Welches Weidelgras)			х		x
7		Wickroggen	Х	X	Х	Х	

Eindrücke und Anbautechnik

Grünroggen DSV ,Bonfire'

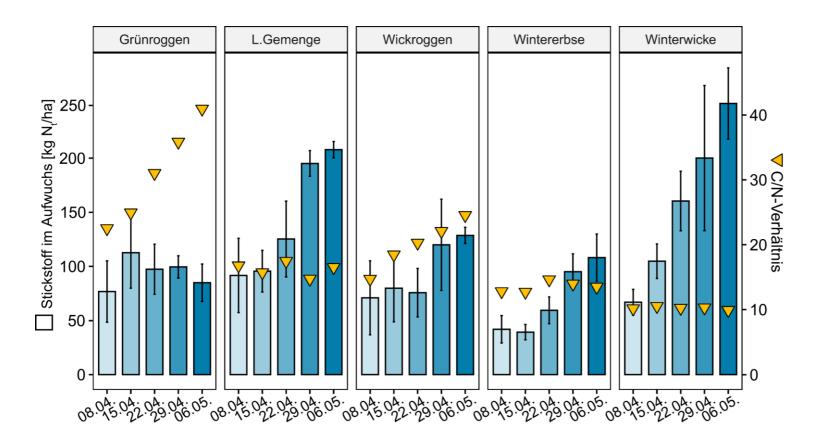
Wintererbse Camena ,Arkta'

Wickroggen DSV ,GPS Ökoʻ

Camena ,Zottelwicke'

Camena ,Landsberger Gemenge'

Aussaat: 16.09.2019 Fotos: 06.11.2019


Eindrücke und Anbautechnik

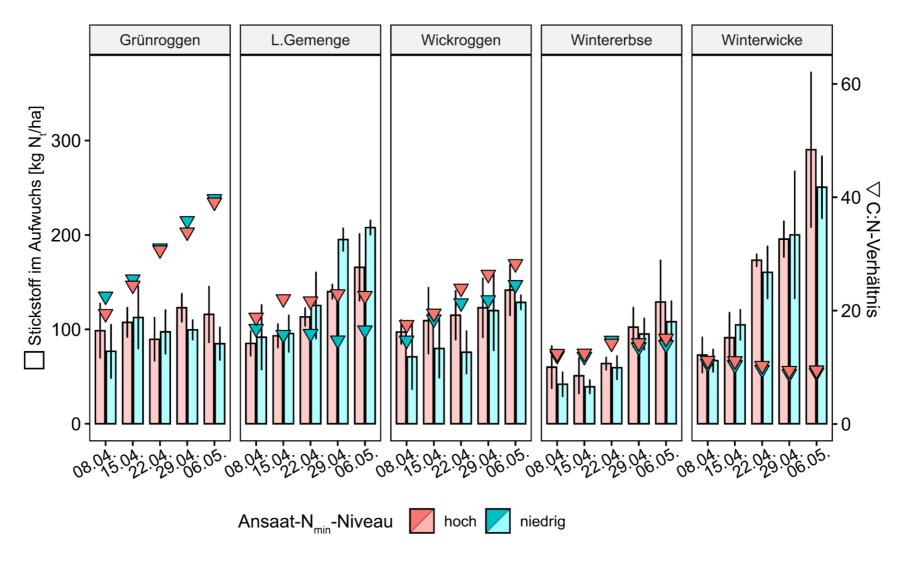
N im Aufwuchs der Zwischenfrüchte

Probeschnitt auf Teilflächen für die Nt/Ct Analyse

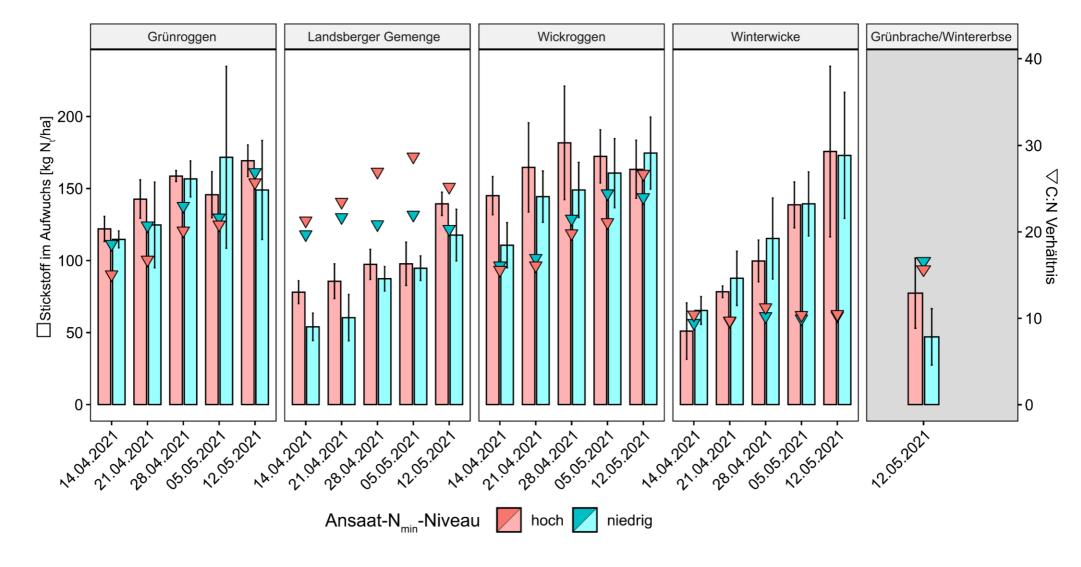
Mineralischer Stickstoff im Boden

- Rest-Nmin
- N-Nachlieferung
- > Erntereste

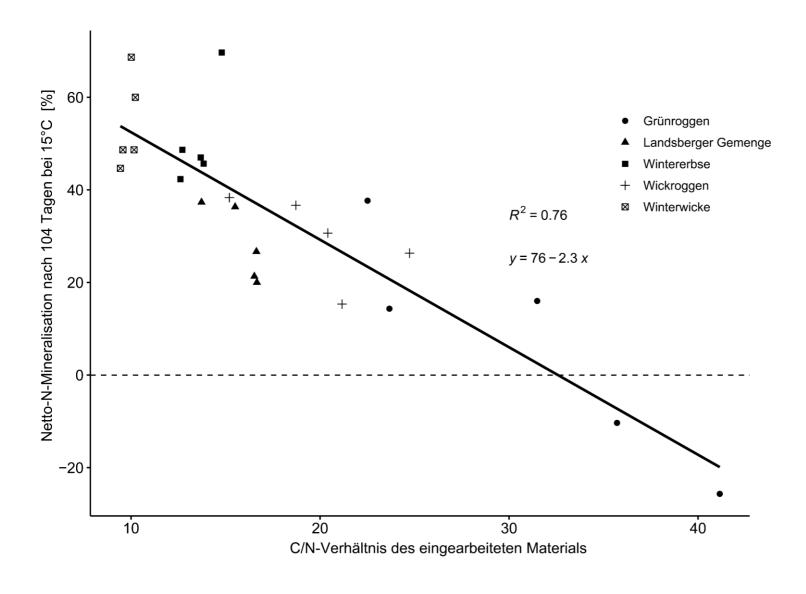
Fixierungsleistung der Knöllchenbakterien


Leguminosenantei (bei Gemengen)

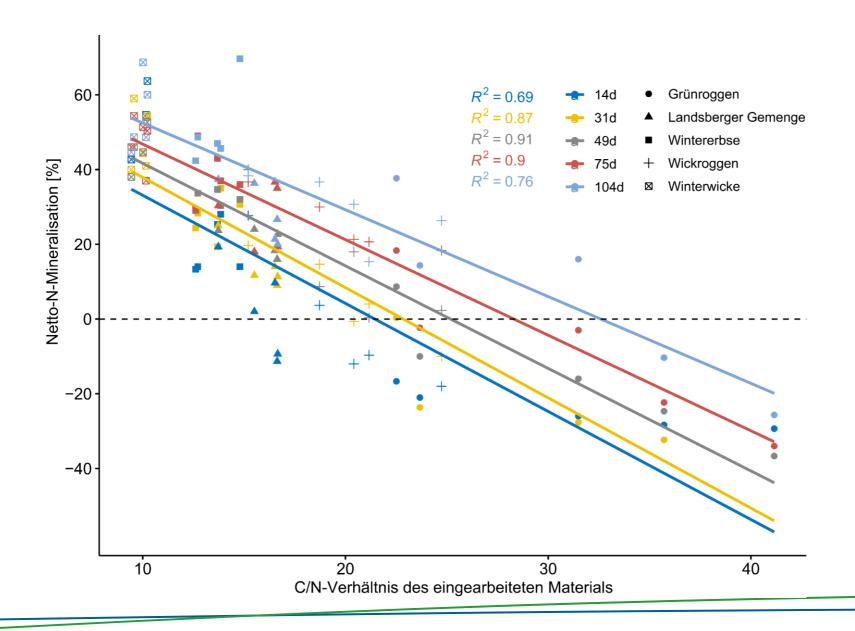
NO₃ und NH₄ "deaktivieren" Nitrogenase


N im Aufwuchs der Zwischenfrüchte

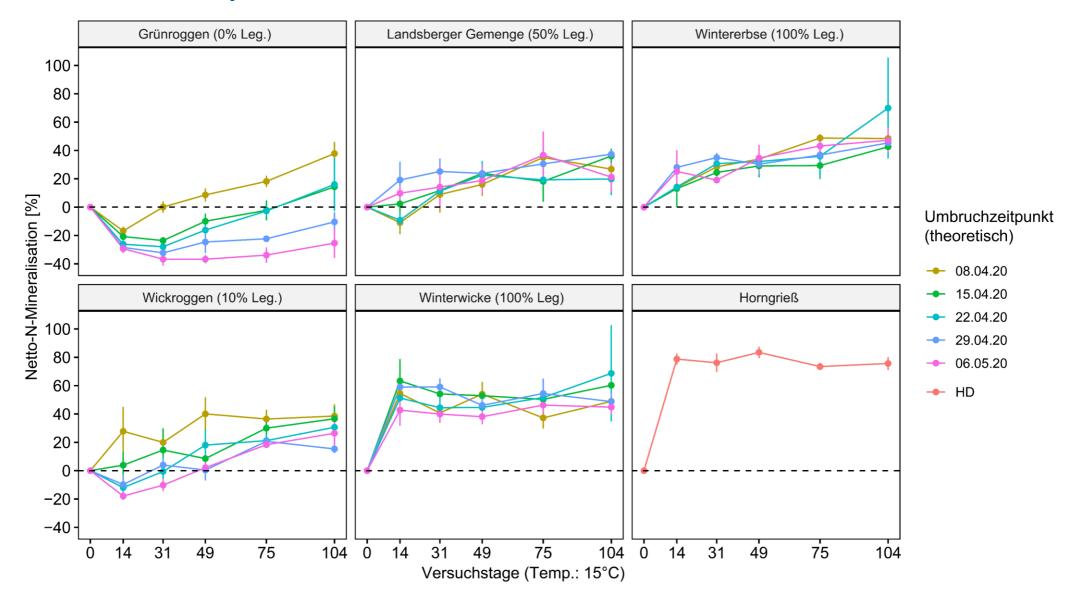
Ausgangs-N_{min} 47 kg N/ha; "Herbst N_{min} hoch": +100 kg N/ha (KAS); "Herbst N_{min} niedrig": ohne N-Gabe


N im Aufwuchs der Zwischenfrüchte

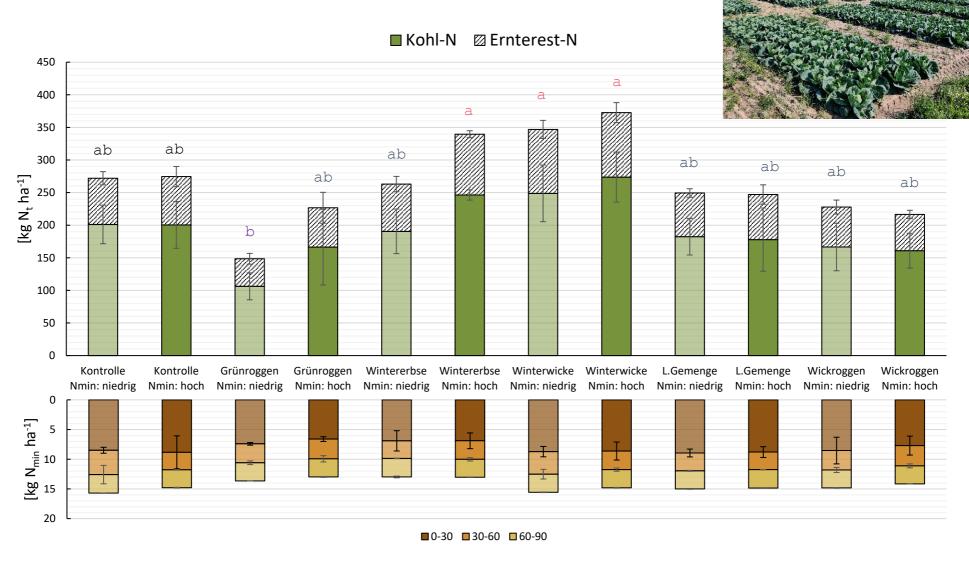
Ausgangs-N_{min} 133 kg N/ha; "Herbst N_{min} hoch": +100 kg N/ha (KAS); "Herbst N_{min} niedrig": ohne N-Gabe


Inkubationsexperiment nach BRAUN/LABER

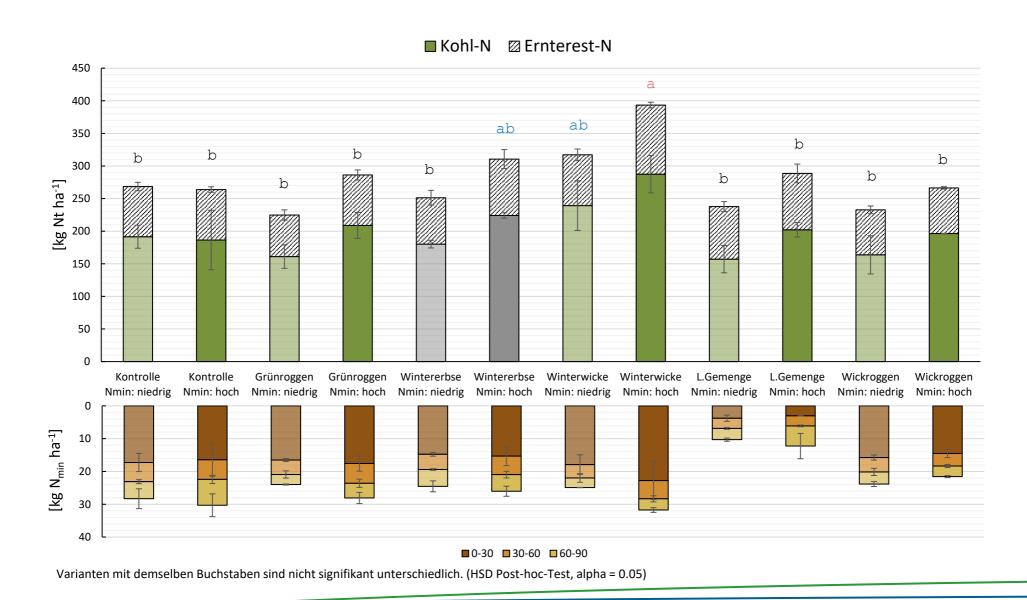
- > 104 Tage bei 15°C
- Umbruchtermine x Zwischenfrüchte
- Material getrocknet und gehäckselt
- Einmischung in Sl2Oberboden



Inkubationsexperiment nach BRAUN/LABER



Inkubationsexperiment nach Hermann Laber


N-Aufnahme und Residual-N_{min} (Kohlnachbau)

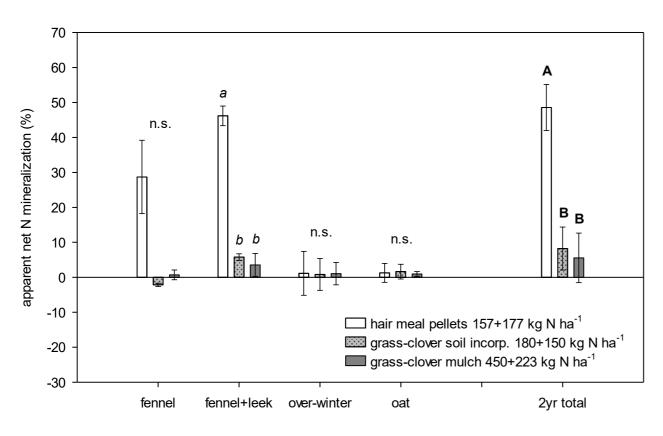
Varianten mit demselben Buchstaben sind nicht signifikant unterschiedlich. (HSD Post-hoc-Test, alpha = 0.05)

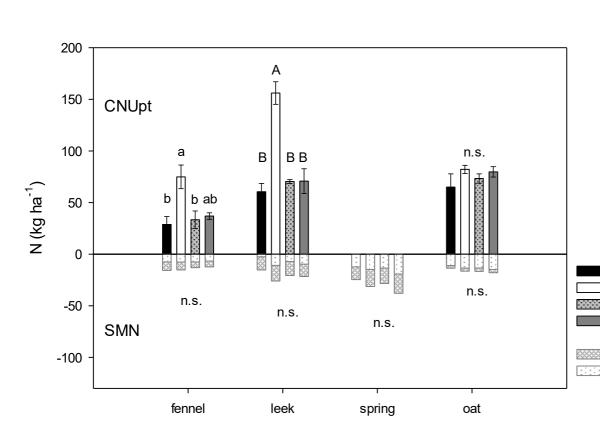
N-Aufnahme und Residual-N_{min} (Kohlnachbau)

Abschläge in Abhängigkeit von Vor- und Zwischenfrüchten (DüV 2020, Anl. 4, Tab. 7)

	abgefroren	0 kg N/ha
Nichtleguminosen	nicht abgefroren	20 kg N /bo
	im Frühjahr eingearbeitetim Herbst eingearbeitet	20 kg N/ha 0 kg N/ha
	abgefroren	10 kg N/ha
Leguminosen	nicht abgefroren	
Legammosen	im Frühjahr eingearbeitetim Herbst eingearbeitet	40 kg N/ha 10 kg N/ha

> geeignete Schätzhilfen erforderlich


Schnittgutverwendung



Unterschiedliche Buchstaben desselben Typs kennzeichnen signifikante Unterschiede (Tukey-HSD, p<0,05); Fehlerbalken = Standardfehler

Katroschan, K.-U.; Hirthe, G.: Versuchsergebnisse Systemvergleich (2015-2016), unveröffentlicht

N-Düngemengen (kg N/ha)

FENCHEL

HMP 157 (C/N 3,5) Silage Einarb. 180 (C/N 16,2) Silage Mulch 450 (C/N 16,2)

PORREE

HMP 177 (C/N 3,5)
Grünschnitt Einarb. 150 (C/N 41,9)
Grünschnitt Mulch 223 (C/N 41,9)

unamended control
hair meal pellets

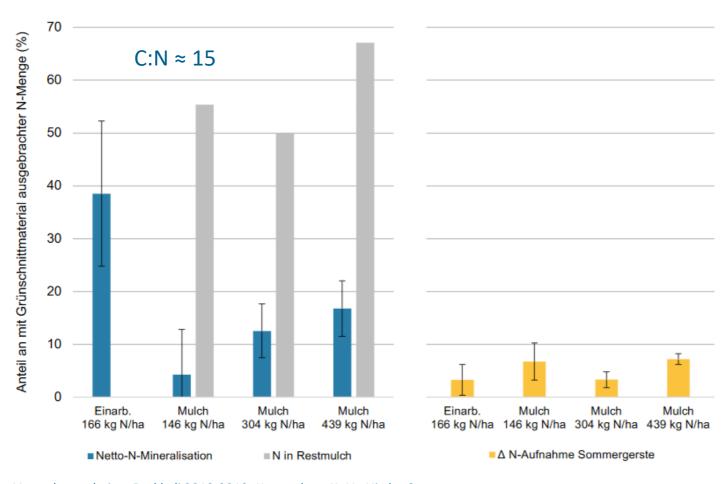
C&C soil incorp.

C&C mulch
60-90 cm soil depth

30-60 cm soil depth

0-30 cm soil depth

Kleegras 'jung' 554 kg N/ha 14,2 t TM/ha C:N 11,4

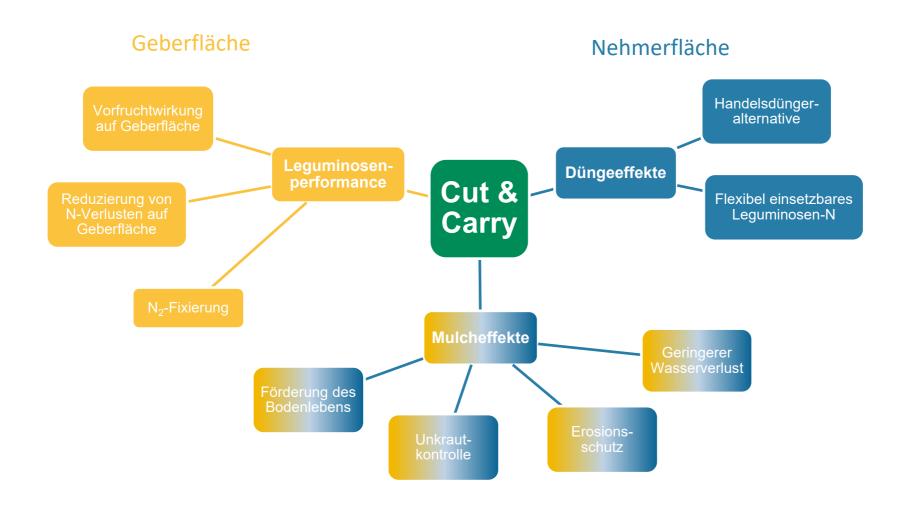


Kleegras 'alt' 175 kg N/ha 11,5 t TM/ha C:N 27,7

Sandhafer 162 kg N/ha 10,6 t TM/ha C:N 32,2

Versuchsergebnisse Brokkoli 2018-2019; Katroschan, K.-U., Hirthe G.

	Versuche Gülzow	Praxis (Freiland)	Praxis (Folie)	Literatur* (Freiland)
Transfermulch (Auflage)	14 % (4-27 %; # 8)	11 % (3-20 %; # 3)	12 % (-3, 27 %; # 2)	15 % (4-28 %; # 22)
Transfermulch (Einarbeitung)	28 % (6-39 %; # 3)			16 % (11-25 %; # 3)
Org. Handelsdünger	41 % ¹ (30-47 %; # 3)	33 % ¹ (# 1)	41 % ² (12,69 %; # 2)	


^{*}Båth and Elfstrand (2008) Use of Red Clover-Based Green Manure in Leek Cultivation; Riley et al. (2003) Yield Responses and Nutrient Utilization with the Use of Chopped Grass and Clover Material as Surface Mulches in an Organic Vegetable Growing System; Båth et al. (2006) Surface Mulching with Red Clover in White Cabbage Production. Nitrogen Uptake, Ammonia Losses and the Residual Fertility Effect in Ryegrass

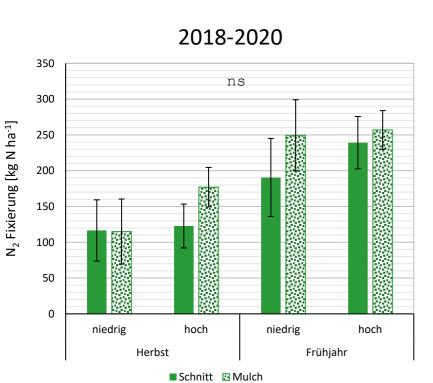
¹Haarmehlpellets

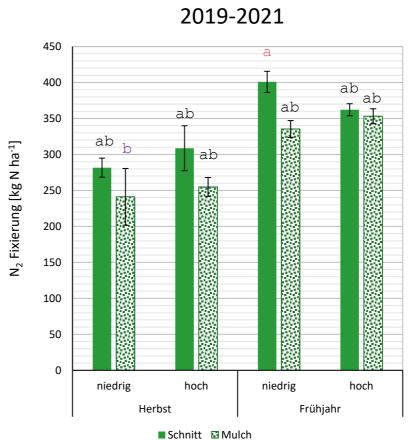
²Vinasse/Biosol, Phytogries

Multifunktionalität von Leguminosen in Cut&Carry Systemen

Katroschan, K.-U. (2019) modifiziert

Kleegras in gemüsebaulichen Fruchtfolgen


- > Ermittlung der Fixierungsleistung
- bei verschiedenen Managementsystemen (Mulch-/Schnittnutzung)
- > Auswirkungen von hohen Herbst N_{min}-Werten und Aussaatzeitpunkt
- ➤ Nachbauwirkung (Weißkohl)


1	Etablierungszeitpunkt/-verfahren
	Herbstblanksaat Kleegras
	Frühjahrsblanksaat – nach WZF (Grünroggen)
2	Herbst-Nmin-Niveau
	Hoch, aufgedüngt mit 100 kg N/ha (KAS)
	Niedrig, möglichst < 50 kg N/ha
3	Management
	Schnittnutzung
	Mulchnutzung
	Deutsches Weidelgras (Vergleichsparzellen)

- 3 faktorielle Split-Plot-Anlage
- 3 Wiederholungen
- + zeitliche Wiederholung

N₂ Fixierungsleistung

N₂ Fixierung ohne Berücksichtung der Wurzel- und Stoppelbiomasse. Varianten mit demselben Buchstaben sind nicht signifikant unterschiedlich. (HSD Post-hoc-Test, alpha = 0.05)

Eingearbeitete oberirdische Biomasse

2020

2021

Umbruch am 21.04.

Umbruch	am	28.05	•
lt-Gehalt*			(

Varianten	Nt-Gehalt* [kg Nt ha ⁻¹]	C:N-Verhältnis*	Varianten	Nt-Gehalt* [kg Nt ha ⁻¹]	C:N-Verhältnis*
1.1.1	30,8±8,3 ^{abc}	22,4±3,6 ^{cd}	1.1.1	126,8±33,5 ^{cd}	17,9±0,8 ^{bc}
1.1.2	34,4±3,3 ^{abc}	23,2±2,7 ^{bcd}	1.1.2	117,7±46,4 ^{de}	19,3±3,8 ^{bc}
1.1.3	18,3±7°	30,4±1,8 ^{ab}	1.1.3	44,1±8,2 ^{efg}	30,1±1,3ª
1.2.1	32,2±6,3 ^{abc}	23,1±1,4 ^{cd}	1.2.1	135,4±32,4 ^{bcd}	17,0±2,1 ^{bc}
1.2.2	37,9±6,9 ^{abc}	22,8±1,6 ^{cd}	1.2.2	102,9±37,3 ^{def}	21,9±3,2 ^b
1.2.3	19,7±2,1°	30,3±0,9 ^{ab}	1.2.3	37,7±6,2 ^{fg}	28,9±1,3ª
2.1.1	46,4±14,2 ^{ab}	16,4±0,9 ^d	2.1.1	232,4±5,9 ^a	12,7±0,8°
2.1.2	40,5±10,4 ^{abc}	18,7±3,1 ^d	2.1.2	208,1±19,8 ^{ab}	13,8±3,9°
2.1.3	24,3±7,2 ^{bc}	29±3,5 ^{abc}	2.1.3	34,0±5,5 ^{fg}	31,8±0,8ª
2.2.1	50,7±12,6 ^a	17,8±3,5 ^d	2.2.1	200,4±37,2 ^{abc}	12,9±0,4°
2.2.2	41,3±3,7 ^{abc}	<mark>19,2±2,2</mark> d	2.2.2	169,6±9,8 ^{abcd}	14,4±2,3°
2.2.3	20,9±3,7°	31,7±1,7°	2.2.3	24,5±7,0 ⁹	31,3±2,4a

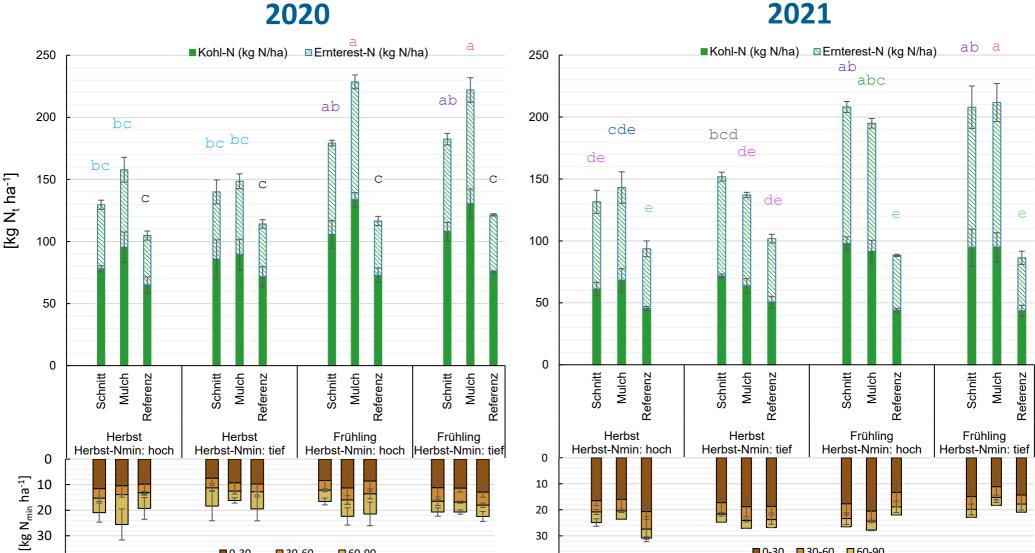
Varianten

- 1 Herbstaussaat
- 2 Frühjahrsaussaat
- 1 Herbst-Nmin: hoch 2 Herbst-Nmin: niedrig
- 1 Schnittabfuhr
- 2 Mulchverbleib3 Grasreferenz

Mittelwerte, die keinen gemeinsamen Gruppierungsbuchstaben haben, unterscheiden sich signifikant (p < .05, Tukey-Test).

^{*}Mittelwert (n=3)

Eindrücke Anbautechnik



N-Aufnahme und Residual-N_{min} (Kohlnachbau) 2020

30

40

Vegetationstage 2020: 116; 2021: 105; es erfolgte keine N-Zudüngung Varianten mit demselben Buchstaben sind nicht signifikant unterschiedlich. (HSD Post-hoc-Test, alpha = 0.05)

60-90

30-60

■0-30 **■**30-60 **■**60-90

0-30

N-Aufnahme und Residual-N_{min} (Kohlnachbau)

Kurz & Knapp

- > Einfaches Mulchen ist immer N-ineffizient
 - ➤ Entgangener Nutzen des Schnittguts
 - Mögliche Verschlechterung der Bestandeszusammensetzung
- Wie stark ist jedoch abhängig von mehreren Faktoren
 - > Anzahl der Schnitte bzw. Schichtdicke
 - Nmin zur Ansaat
 - Wasserverfügbarkeit?
 - > ...?
- Mulchverbleib von einem oder mehreren Schnitten kann im Einzelfall trotzdem sinnvoll sein

Zusammenfassung

- Leguminosen haben grundsätzlich das Potenzial die N-Versorgung im Gemüsebau maßgeblich zu sichern
- ➤ Hohe Rest-N_{min}-Gehalte wirken scheinbar weniger negativ auf die Leguminosenetablierung als angenommen
- Legume Winterzwischenfrüchte können insbesondere in Reinsaat und spätem Umbruch fixierten Stickstoff in das System bringen
- ➤ Bei Einarbeitung von Schnittgut zu Gemüsekulturen eher junges Material mit niedrigem C/N-Verhältnis verwenden
- ➤ Bei Auflagemulch ist N im Restmulch nach der Ernte auswaschungsgefährdet
- Mehrjährige Gemenge mit Schnittgutverwertung erfordern zwar deutlich mehr Logistik und Organisation, haben aber das größte N-Potenzial
- Für eine bessere Abschätzung der Leguminosenperformance bedarf es weiterer Schätztools
- > "Ganz oder gar nicht": Leguminosenanbau ist kein Selbstläufer!

Landesforschungsanstalt für Landwirtschaft und Fischerei

Vielen Dank für Ihre Aufmerksamkeit!

Landesforschungsanstalt für Landwirtschaft und Fischerei Gartenbaukompetenzzentrum Felix Besand Telefon +49 3843 789-267

www.lfamv.de